ADDITIONAL HEALTH INFORMATION

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4771.

FOR CUSTOMERS WITH SPECIAL HEALTH CONCERNS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4771).

HOW TO REACH US

If you have any questions about this report or concerning your water utility, please contact Cathy Cabaza, City of Fellsmere at (772) 571-0127 or visit our website at www.cityoffellsmere.org. The City of Fellsmere’s office is open from 8:30 am until noon and 1:00 pm until 5:00 pm, Monday through Friday. We want our valued customers to be informed about their water utility.

SOURCE WATER ASSESSMENT PLAN

In 2008, the Department of Environmental Protection (DEP) performed a Source Water Assessment on our system and a search of the data sources indicated no potential sources of contamination near our wells. The assessment results are available on the DEP Source Water Assessment and Protection Program website at www.depr.state.fl.us/hwwmp.

CITY OF FELLSMERE

2008 ANNUAL DRINKING WATER QUALITY REPORT

Este informe contiene información importante sobre su agua bebible. Tradúcelo a tu idioma para entenderlo mejor.

We’re pleased to present to you this year’s Annual Drinking Water Quality Report. This report is designed to inform you about the quality of water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the services we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. If you have any questions or concerns about the information provided in this report, please feel free to call any of the numbers listed.

WHERE YOUR WATER COMES FROM

The water source for the City of Fellsmere is ground water which is withdrawn from four wells in the Surficial Aquifer. The water is disinfected to destroy microbes prior to delivery to customers.

HOW WE ENSURE YOUR DRINKING WATER IS SAFE

The City of Fellsmere routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2008. The state allows us to monitor for some contaminants less than once per year because the concentrations of those contaminants do not change frequently. Some of our data are more than one year old but are based on the most recent water analyses performed and are representative of the water quality.

HOW TO READ THE TABLE

The terms used in the water quality summary table and in other parts of this report are defined below.

Action level (AL) – the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum contaminant level or MCL – the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum contaminant level goal or MCLG – the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRL – the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG – the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A – not applicable

ND – means not detected and indicates that the substance was not found by laboratory analysis.

ppm – parts per million or milligrams per liter is one part by weight of analyte to one million parts by weight of the water sample.

ppb – parts per billion or micrograms per liter is one part by weight of analyte to one billion parts by weight of the water sample.

ppb – picocuries per liter is an measure of the radioactivity in water.
<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo./yr.)</th>
<th>MCL/AL Violation Y/N</th>
<th>Level Detected*</th>
<th>Range of Results*</th>
<th>MCL or MRDLG</th>
<th>MCL or MRD</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radionuclides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha emitters (pCi/l)</td>
<td>10/08</td>
<td>N</td>
<td>4</td>
<td>N/A</td>
<td>0</td>
<td>15</td>
<td>Emission of natural deposits</td>
</tr>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>7/08</td>
<td>N</td>
<td>0.0094</td>
<td>N/A</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium (ppb)</td>
<td>7/08</td>
<td>N</td>
<td>14.3</td>
<td>N/A</td>
<td>100</td>
<td>100</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits</td>
</tr>
<tr>
<td>Lead (ppb) (point of entry) (ppb)</td>
<td>7/08</td>
<td>N</td>
<td>1.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Residue from man-made pollution such as auto emissions and paint; lead pipe, casing, and solder</td>
</tr>
<tr>
<td>Nickel (ppb)</td>
<td>7/08</td>
<td>N</td>
<td>1.87</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>Pollution from mining and refining operations; Natural occurrence in soil</td>
</tr>
<tr>
<td>Sulfate (ppm)</td>
<td>7/08</td>
<td>N</td>
<td>15.7</td>
<td>N/A</td>
<td>N/A</td>
<td>150</td>
<td>Salt water intrusion, leaching from soil</td>
</tr>
<tr>
<td>Stage 1 Disinfectants and Disinfection By-Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloraminates (ppm)</td>
<td>10/08 - 12/08</td>
<td>N</td>
<td>2.1</td>
<td>0.9 - 5.4</td>
<td>4</td>
<td>4.0</td>
<td>Water additive used to control microorganisms</td>
</tr>
<tr>
<td>TTHM's (Total Trihalomethanes) (ppb)</td>
<td>2/06 & 8/08</td>
<td>N</td>
<td>21.6</td>
<td>17.0 - 25.5</td>
<td>N/A</td>
<td>60</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Lead and Copper (Tap Water)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (tap water) (ppm)*</td>
<td>6/08</td>
<td>N</td>
<td>0.227</td>
<td>0 samples > AL</td>
<td>1.3</td>
<td>AL = 1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead (tap water) (ppb)*</td>
<td>6/08</td>
<td>N</td>
<td>3.17</td>
<td>0 samples > AL</td>
<td>0</td>
<td>AL = 15</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
</tbody>
</table>

TABLE NOTES:

A. Results in the level detected columns for radiological and inorganic contaminants are the highest detected level at any sampling point. The results in the level detected column for chloraminates, total trihalomethanes (TTHM's), and haloacetic acids (HAA5's) are the annual average of the sample results. Results in the level detected column for lead and copper are the 90th percentile of all sample results. The range of results for chloraminates, TTHM's, and HAA5's is the range of results (lowest to highest) at the individual sampling sites. The range of results for lead and copper is the number of samples during the sampling period that were above the action level.

B. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Kelowna is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water section at http://www.epa.gov/safewater/leads.

C. We failed to complete required sampling for tap water lead and copper during July through December 2008 and therefore were in violation of monitoring and reporting requirements. Lead and copper sampling was performed during January through June 2008 but was also required during the second half of the year. Because we did not perform the required sampling, we did not know whether the contaminants were present in your drinking water, and we are unable to tell you whether your health was at risk during that time. The monitoring period was 7/08 to 12/08. Forty samples were required for each contaminant and some were taken. The appropriate sampling resumed in January 2009 with satisfactory results.