WE'RE PLEASED TO PRESENT TO YOU THIS YEAR'S ANNUAL DRINKING WATER QUALITY REPORT.

The term used in the water quality summary table and in other parts of this report are defined below.

Action level (AL) – The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum contaminant level or MCL – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum contaminant level goal or MCLG – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

ND – Not detected and indicates that the substance was not found by laboratory analysis.

N/A – Not applicable

ppb – Parts per billion or micrograms per liter is one part by weight of analyte to one billion parts by weight of the water sample.

ppm – Parts per million or milligrams per liter is one part by weight of analyte to one million parts by weight of the water sample.

pCi/l – Picocuries per liter is a measure of the radioactivity in water.

AL – Action level

C – Inorganic contaminants

D – Organic chemical contaminants

E – Radioactive contaminants

H – Microbial contaminants

K – Pesticides and herbicides

N – Nitrate

O – Other contaminants

P – Petroleum hydrocarbons

R – Radionuclides

S – Solvents

T – Trace elements

V – Volatile organic chemicals

W – Water utilities

X – Other

Y – Analytic methods

Z – Other special health concerns

CITY OF FELLSMERE

PWS ID# 3314280

2022 ANNUAL DRINKING WATER QUALITY REPORT

We're pleased to present to you this year’s Annual Drinking Water Quality Report. This report is designed to inform you about the quality of water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources.

We are committed to ensuring the quality of your water. If you have any questions or concerns about the information provided in this report, please feel free to call any of the numbers listed.

WHERE YOUR WATER COMES FROM

The water source for the City of Fellsmere is ground water which is withdrawn from four wells in the Surfical Aquifer. The water is filtered through granular activated carbon to remove impurities, disinfected to destroy microbes, and fluoride is included to prevent tooth decay prior to delivery to customers.

HOW WE ENSURE YOUR DRINKING WATER IS SAFE

The City of Fellsmere monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1, 2022 to December 31, 2022. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old but are based on the most recent water analyses performed.

Nitrate: As a precaution we always notify physicians and health care providers in this area if there is ever a higher than normal level of nitrates in the water supply.
TABLE NOTES:

A. Results in the level detected column for inorganic contaminants, TTHMs, and HAA5s are the highest level detected at any sampling point. The result in the level detected column for chlorine and chloramines is the highest running annual average, computed quarterly, of the monthly averages of all samples collected. The result in the level detected column for lead and copper is the 90th percentile of all sample results for the most recent sampling event. The range of results is the range of results (lowest to highest) at the individual sampling sites including Stage 2 compliance results. The range of results for lead and copper is the number of samples during the most recent sampling period that were above the action level.

B. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Fallsmere is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

C. In September 2022, we missed the sampling period by 4 days for lead and copper. This resulted in a monitoring violation. We did sample and the results are available upon request.

D. For the 3rd quarter of 2022, our contract operator failed to take the required TTHM and HAA5 samples, resulting in another monitoring violation. Make-up samples were taken in the 4th quarter. Regular monitoring continues.

2022 WATER QUALITY SUMMARY TABLE - PWS ID NUMBER 3314280

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo./yr.)</th>
<th>MCL/AL Violation Y/N</th>
<th>Level Detected A</th>
<th>Range of Results A</th>
<th>MCLG or MRDLG</th>
<th>MCL or MRDL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>08/20</td>
<td>N</td>
<td>0.0089</td>
<td>N/A</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>08/20</td>
<td>N</td>
<td>0.21</td>
<td>N/A</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when at the optimum level of 0.7 ppm.</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>08/20</td>
<td>N</td>
<td>26.6</td>
<td>N/A</td>
<td>N/A</td>
<td>160</td>
<td>Saltwater intrusion, leaching from soil</td>
</tr>
<tr>
<td>Lead (point of entry) (ppb)</td>
<td>08/20</td>
<td>N</td>
<td>0.26</td>
<td>N/A</td>
<td>0</td>
<td>15</td>
<td>Residue from man-made pollution such as auto emissions and paint; lead pipe, casing, and solder</td>
</tr>
<tr>
<td>Antimony (ppb)</td>
<td>08/20</td>
<td>N</td>
<td>0.4</td>
<td>N/A</td>
<td>6</td>
<td>6</td>
<td>Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>12/2022</td>
<td>N</td>
<td>0.028</td>
<td>N/A</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Stage 1 Disinfectants and Disinfection Byproducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine and chloramines (ppm)</td>
<td>1/22 – 12/22</td>
<td>N</td>
<td>1.46</td>
<td>0.6 – 2.9</td>
<td>4</td>
<td>4.0</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Stage 2 Disinfectants and Disinfection Byproducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAAs (Haloacetic acids five)</td>
<td>03/22-12/22</td>
<td>Y</td>
<td>20.45</td>
<td>15.2 – 27.9</td>
<td>N/A</td>
<td>60</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>TTHMs (Total trihalomethanes)</td>
<td>03/22-12/22</td>
<td>N</td>
<td>26.31</td>
<td>15.9 – 34.7</td>
<td>N/A</td>
<td>80</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Lead and Copper (Tap Water)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (tap water) (ppm)</td>
<td>10/2022</td>
<td>N</td>
<td>0.202</td>
<td>1 sample > AL</td>
<td>1.3</td>
<td>AL = 1.3</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead (tap water) (ppb)</td>
<td>10/2022</td>
<td>N</td>
<td>2.8</td>
<td>1 sample > AL</td>
<td>0</td>
<td>AL = 15</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Radioactive Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radium 226 + 228 (pCi/L)</td>
<td>08/2020</td>
<td>N</td>
<td>1.78</td>
<td>N/A</td>
<td>0</td>
<td>5</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

A. Results in the level detected column for inorganic contaminants, TTHMs, and HAA5s are the highest level detected at any sampling point. The result in the level detected column for chlorine and chloramines is the highest running annual average, computed quarterly, of the monthly averages of all samples collected. The result in the level detected column for lead and copper is the 90th percentile of all sample results for the most recent sampling event. The range of results is the range of results (lowest to highest) at the individual sampling sites including Stage 2 compliance results. The range of results for lead and copper is the number of samples during the most recent sampling period that were above the action level.

B. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Fallsmere is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

C. In September 2022, we missed the sampling period by 4 days for lead and copper. This resulted in a monitoring violation. We did sample and the results are available upon request.

D. For the 3rd quarter of 2022, our contract operator failed to take the required TTHM and HAA5 samples, resulting in another monitoring violation. Make-up samples were taken in the 4th quarter. Regular monitoring continues.